• ورود کاربران دانشگاهی

  • ثبت نام(مطالعه آنلاین پایان نامه ها)

  • کاربر مهمان
    پنجشنبه 30 شهریور 1396| 54.225.39.142 :Your IP

    سامانه دسترسی به پایان نامه های دانشگاه اصفهان



    عنوان :
    ارزیابی و مقایسه طرح های بهینه در مدل های خطی تعمیم یافته
    انتشارات : دانشگاه اصفهان
    سال :1388
    زبان : Persian
    شماره سند : 6647
    موضوع :آمار گرایش آمار ریاضی
    پژوهشگر : فریده جدی گوگه
    توصیفگر لاتین : Mathematical Statistics , Generalized Linear Model , Optimal Design , Linear Regression , Optimality Criterion
    توصیفگر فارسی : آمار ریاضی ? مدل خطی تعمیم یافته ? طرح بهینه ? رگرسیون خطی ? معیار بهینگی
    دانشکده : دانشکده علوم، گروه آمار
    مقطع : کارشناسی ارشد

    استاد راهنما : هوشنگ طالبی
    استاد مشاور :
    سال دفاع : 1388
    شماره رکورد : 6647
    شماره راهنما : STA2 73
    فهرست : فهرست مطالب
    عنوان صفحه

    فصل اول: مقدمه، تعاریف و اصطلاحات
    1-1 - معرفی موضوع و پیشینه تحقیق .......................................................................................................................... 1
    1-2- اهداف تحقیق ............................................................................................................................................................ 5
    1-3- کاربرد نتایج تحقیق ................................................................................................................................................. 6
    1-4- معرفی ساختار پایان‌نامه ......................................................................................................................................... 6

    فصل دوم: معرفی مدل‌های خطی تعمیمیافته
    2-1- مدل‌های رگرسیون خطی ...................................................................................................................................... 8
    2-1-1- الگوی رگرسیون خطی ساده ................................................................................................................... 8
    2-1-2- الگوی رگرسیون خطی چندگانه .............................................................................................................. 9
    2-2- مدل‌های غیر‌خطی ................................................................................................................................................ 10
    2-3- مدل‌های خطی تعمیمیافته ................................................................................................................................. 11
    2-3-1- مدل‌های خطی تعمیمیافته یک‌متغیره ................................................................................................ 11
    2-3-1-1- برآورد حداکثر درستنمایی پارامترها در مدل‌های خطی تعمیمیافته یک‌متغیره ...........15
    2-3-2- مدل‌های خطی تعمیمیافته چند‌متغیره ............................................................................................... 20
    2-4- مدل لجستیک ....................................................................................................................................................... 22
    2-4-1- برآورد پارامترهای مدل لجستیک به روش حداکثر درستنمایی .................................................... 23

    فصل سوم: طرح آزمایش و معیارهای بهینگی
    3-1- طرح آزمایش .......................................................................................................................................................... 26
    3-2- معیارهای بهینگی .................................................................................................................................................. 28
    3-3- قضایای هم‌ارزی ..................................................................................................................................................... 32
    3-4- طرح بهینه ................................................................................................................................................................36
    3-4-1- طرح بهینه موضعی ....................................................................................................................................36
    3-4-1-1- طرح D- بهینه موضعی ..............................................................................................................37
    3-4-2- طرح بهینه دنباله‌ای.......................................................................................................................................41
    عنوان صفحه

    3-4-3- طرح بهینه بیزی ..........................................................................................................................................43
    3-4-4- طرح بهینه مینیماکس................................................................................................................................44
    3-5- کارایی طرح ..............................................................................................................................................................46

    فصل چهارم: مقایسه و ارزیابی طرح‌های بهینه در مدل‌های خطی تعمیمیافته
    4-1- معیار میانگین مربعات خطای پیش‌بین در مدل‌های خطی تعمیمیافته یک‌متغیره ............................... 48
    4-2- معیار میانگین مربعات خطای پیش‌بین در مدل‌های خطی تعمیمیافته چند‌متغیره ............................... 56
    4-3- معیار میانگین مربعات خطای پیش‌بین در مدل لجستیک ........................................................................ 59
    4-4- کاهش اریبی برآوردگر ماکزیمم درستنمایی...................................................................................................... 63
    4-5- نمودارهای چندک‌ها برای ارزیابی و مقایسه طرح‌ها ...................................................................................... 64
    4-5-1- نمودارهای چندک‌ها برای ارزیابی و مقایسه طرح‌ها در مدل‌های خطی ...................................... 64
    4-5-2- نمودارهای چندک‌ها برای ارزیابی و مقایسه طرح‌ها در مدل‌های غیرخطی .................................68
    4-5-3- نمودارهای پراکندگی چندک‌های میانگین مربعات خطای پیش‌بین برای ارزیابی و مقایسه طرح‌‌ها در مدل لجستیک .............................................................................................................................................. 76

    فصل پنجم: مثال‌های عددی
    5-1- مثال 1 ..................................................................................................................................................................... 79
    5-2- مثال 2 ..................................................................................................................................................................... 87
    5-3- مثال 3........................................................................................................................................................................ 91
    5-4- مثال 4 ..................................................................................................................................................................... 99
    5-5- نتیجه‌گیری .......................................................................................................................................................... 107
    پیوست‌ها .........................................................................................................................................................................108
    منابع و مآخذ ..................................................................................................................................................................113



    چکیده :
    چکیده: الگوهای خطی به شکل y=x?+e که در آن e مستقل و با توزیع نرمال استاندارد فرض میشود، مبنای تجزیه و تحلیل داده‌های با پاسخ پیوسته است. مدل‌های خطی تعمیمیافته بوسیله دابسون (1945) که در‌برگیرنده متغیرهای پاسخ با توزیع‌های غیر‌نرمال مانند پواسن و دوجمله‌ای بودند، مورد توجه قرار‌گرفت. تئوری طرح‌های بهینه برای داده‌های شمارشی دودویی بر پایه این مدل‌ها بنا نهاده شد. منظور از طرح، انتخاب مناسب مقادیر x و تعداد تکرار آنهاست. برای هر طرح، مشاهداتy را بدست آورده و از روی مشاهدات استنباط روی پارامترهای مجهول مدل صورت میگیرد. در این راستا، طرح‌های بهینه را تعریف کرده‌اند. منظور از طرح‌های بهینه آن است که چه مقادیری از x را با چند تکرار انتخاب کنیم تا بر اساس مشاهدات y مربوط به این نقاط پارامترهای مجهول دارای خواص بهینه باشند. برخلاف مدل‌های خطی، معیارهای بهینگی برای طرح‌ها در مدل‌های خطی تعمیمیافته به پارامترهای نامعلوم بستگی دارند، که این وابستگی مشکل بزرگی برای ساختن و ارزیابی طرح‌ها بوجود میآورد. برای رفع این مشکل، روشهای مختلفی مدنظر قرار گرفته‌اند که از جمله میتوان به روش طرح‌های بهینه موضعی، دنباله‌ای، بیزی و مینیماکس اشاره کرد. همچنین در حل مشکل وابستگی معیارها به پارامترهای نامعلوم مدل، روش‌های گرافیکی میتواند به عنوان معیاری برای مقایسه طرح‌ها و در نتیجه انتخاب طرح برتر از میان طرح‌های رقیب شود. رابینسون و خوری (2003) بررسی و مقایسه طرح‌ها برای مدل‌های لجستیک را برای نمونه‌های کوچک مورد مطالعه قرار دادند. از آنجایی که برآوردگر پارامترها برای مدل لجستیک در نمونه‌های کوچک اریب هستند، میانگین مربعات خطای پیش‌بین را به عنوان معیاری برای مقایسه کردن طرح‌ها استفاده کرده‌اند. برای رفع مشکل وابستگی معیار به پارامترهای نامعلوم مدل، مولفین اخیر روشی شهودی و گرافیکی بر اساس نمودارهای پراکندگی چندکهای(QDGs)میانگین مربعات خطای پیش‌بین مقیاس‌شده (SMSEP) را معرفی کردند. این نمودارها قادرند یک ارزیابی از توانایی پیش‌بینی کلی طرح داده شده را ارائه دهند. در این تحقیق ضمن مطالعه و مروری بر طرح‌های بهینه موضعی، دنباله‌ای، بیزی و مینیماکس و نمودار پراکندگی چندک‌ها برای ارزیابی و بررسی طرح‌ها در مدل لجستیک معرفی میشوند. طرح‌های بهینه گفته شده در نمونه‌های کوچک برای این مدل با استفاده از نمودارها، که روشی شهودی و گرافیکی است، (رابینسون و خوری (2003)) مقایسه میشوند. علاوه بر آن تعمیم روش رابینسون و خوری(2003) برای انتخاب طرح بهینه را در مدل‌های خطی تعمیمیافته چند‌متغیره موخرپادای و خوری (2008) مورد مطالعه قرارداده‌ایم. کلید واژه‌ها: پاسخ دودوئی، مدل‌های خطی تعمیمیافته، میانگین مربعات خطای پیش‌بین، طرح بهینه، معیار بهینگی و نمودارهای پراکندگی چندکها .

    چکیده انگلیسی :
    Abstract Since the introduction of generalized linear models (GLMs) by Dobson (1945), the focus of attention in optimal design theory has shifted from the traditional linear model to these more general models. The optimal design problem consists of selecting the values of the explanatory variable x at which to take observations to maximize precision of the estimates. However, the main design optimality criteria, such as A-, D-, E-, and G- optimality, that is, the so-called alphabetic optimality, remain the same as in linear models. These criteria focus entirely on the precision of parameter estimates, which is measured by the asymptotic variance–covariance matrix of the estimates. However, unlike linear models, designs for GLMs depend on the unknown parameters of the fitted model. The use of any design optimality criterion would therefore require some prior knowledge of the parameters. This dependence problem causes great difficulty in the construction and evaluation of designs. Common approaches to solving this problem include sequential generation of designs and the use of the Bayesian methodology. We consider the problem of discriminating among designs for logistic regression models. These models are appropriate for binary data situations which are frequently encountered in dose–response, quantal response, and success–failure experiments. Since in small samples the parameter estimates for a logistic regression model are biased, It is considered the mean-squared error of prediction (MSEP) as a criterion for comparing designs. The MSEP incorporates both the variance and bias associated with the estimated mean response. As in any other design criterion for GLMs, the MSEP depends on the unknown parameters of the model. Robinson and Khuri introduced a graphical procedure for comparing designs using the so-called quantile dispersion graphs (QDGs) of the MSEP. These graphs provide an assessment of the overall prediction capability of a given design through a visual display of the MSEP. They also give a clear depiction of the dependence of the design on the model’s parameters. The QDGs can therefore be conveniently used to compare several candidate designs. Khuri and Lee (1998) used a graphical procedure for comparing designs for nonlinear models. Keywords: Binary response, Generalized linear models, Mean-squared error of prediction, Optimal design, Optimality criterion, Quantile dispersion graphs.


    کلید واژه ها :
    آمار ریاضی ? مدل خطی تعمیم یافته ? طرح بهینه ? رگرسیون خطی ? معیار بهینگی,Mathematical Statistics , Generalized Linear Model , Optimal Design , Linear Regression , Optimality Criterion

    1388
    0

    صفحه اول : University of Isfahan Faculty of Science Department of Statistics M. Sc. Thesis Evaluating and comparing optimal designs for generalized linear models Supervisor: Dr. Hooshang Talebi By: Farideh Jeddi Googeh March 2010
    فصل اول :
    فصل دوم :
    فصل سوم :
    فصل چهارم :
    فصل پنجم :
    فصل ششم :